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Abstract— The aim of this paper is to analyze an SEIR 

epidemic model in which prophylactic for the exposed 

individuals is included. We are interested in finding the basic 

reproductive number of the model which determines whether 

the disease dies out or persist in the population. The global 

attractivity of the disease-free periodic solution is obtained 

when the basic reproductive number is less than unity and 

the disease persist in the population whenever the basic 

reproductive number is greater than unity, i.e. the epidemic 

will turn out to endemic. The linear and non–linear 

Lyapunov function of Goh–Volterra type was used to 

establish the sufficient condition for the global stability of the 

model. 
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I. INTRODUCTION 

Infectious diseases have tremendous influence on human life, 

and millions of people died of various infectious diseases. 

Controlling infectious diseases has been an increasingly 

complex issue in recent year Driessche [21]. It has been 

revealed that many infectious diseases in nature incubate 

inside the hosts for a period of time before the hosts become 

infectious. 

In a lot of epidemic models Diekmann [5]; Liu [16]; 

Anderson [3]; Lu [17]; Kermark [10], the total population 

was divided into three groups: the susceptible, the infectives 

and the removed individuals. Since Kermack and 

McKendrick constructed a system of ODE to study 

epidemiology in 1927, the method of compartment modelling 

is used until now Driessche [21]. But using the 

compartmental approach, an assumption that a susceptible 

individual first goes through an incubating period (in class E) 

after infection before becoming infectious can be made.  

Adebimpe [1] considered a SIR epidemic model with 

saturated incidence rate and treatment. Liu [15] discussed the 

dynamical behavior of an epidemiological model with non-

linear incidence rates; also Greenhalgh [2] considered SEIR 

models that incorporate density dependence in the death rate. 

Cooke [4] introduced and studied the SEIRS models with 

delays. Greenhalgh [5] studied Hopf bifurcations in models 

of the SEIRS type with density dependent contact rate and 

death rate. Li [12] analyzed the global dynamics of a SEIR 

model with vertical transmission and a bilinear incidence 

rate. Korobeinikov [10] considered the global properties of 

the disease free equilibrium for SEIS and SEIR and also, Li 

[14] considered the global dynamic of the SEI and SEIR 

model with infectious force in latent infected and immune 

period. Research on global properties of epidemic models of 

SEIR is scarce in the literature. 

In this paper, we consider the global properties of an SEIR 

model using the linear and non-linear Lyapunov function 

(Goh-Volterra) to establish the global stability of the disease 

free equilibrium and the endemic equilibrium state 

respectively.  

 

II. MODEL FORMULATION 

The total population is divided into four compartments 

namely: Susceptible ( )S , Exposed ( )E , Infectious ( )I  and 

Recovered ( )R  population. The total size at time t  is 

denoted by ( )N t , where 

( ) ( ) ( ) ( ) ( ).N t S t E t I t R t   
 
The transfers diagram 

is depicted in the following figure: 
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Fig.1: The schematic illustration of the SEIR model 

 

The govern model is given by the system of non-linear ordinary differential equations below: 

dS
SI S

dt
      

dE
SI E E E

dt
        

dI
E I I I

dt
               (1) 

dR
I E R

dt
      

N S E I R     where N is the total population. 
Table.1: Description of the parameters. 

Parameters          Description   

                 Recruitment rate 

 
  

Effective contact rate 

 


  
Natural death rate 

                    Progression rate of exposed individuals into infectious population 

     Recovery rate of the exposed due to prophylactic treatment 

     Disease–induced death rate due to infection in the diseased infected   

 


   
Recovery rate of the exposed due to treatment 

 

   

III. ANALYSIS OF THE MODEL 

Lemma 1: The region 

* 4( , , , ) :D S E I R N





 
   
 

 is positively-

invariant for the model (1). 

Proof: Adding the equations in the model system (1) gives: 

 
dN

N I
dt

             (2) 

Thus, whenever ,N



  then 0.

dN

dt
  Hence, since it 

follows from the right-hand side of the equation (2) that 

dN

dt
is bounded by ,N  and by the standard 

comparison theorem [19] it can be shown that: 

( ) (0) (1 )t tN t N e e 



                 (3) 
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If (0) ,N



 then ( ) .N t






 

Thus, 
*D  is a positivity 

invariant set under the flow described by (1) so that no 

solution path leaves through any boundary of
*D . Hence, it 

is sufficient to consider the dynamics of the model (1) in the 

domain
*D . In this region, the model can be considered as 

been mathematically and epidemiologically well-posed 

[10]. 

3.1 Asymptotic stability of Disease free equilibrium 

(DFE) 

 

The DFE of the model (1) is given by: 

* * * *

0 ( , , , ) ,0,0,0S E I R





 
   

    (4) 

A very important concern about any infectious disease is its 

ability to invade a population [20].  The threshold condition 

known as the basic reproduction number (usually written as

0R ) is used in determining whether the disease will persist 

in the population or dies out as time increases; if 0 1R  , 

then the disease free equilibrium (DFE) will be locally 

asymptotically stable and the disease cannot invade the 

population while when 0 1R  , then the DFE is unstable 

and invasion is possible which could leads to an endemic 

equilibrium state [21]. 

The Local stability of 0 can be established using the next 

generation operator method on (1) [21]. Using the notation 

in [21], it follows that the matrices F and V , for the new 

infection terms and the remaining transfer terms are 

respectively given by: 

0

0 0

F





 
 
 
 
 

, 
1

2

0A
V

A

 
  

 
       (5) 

where 1 2( ),   A ( )A             

Hence, it follows from [21] that: 

   

  1

0

1 2

R FV
A A






              

(6) 

where   is the spectral radius (maximum eigenvalues). 

The result below follows from Theorem 2 in [18]: 

Lemma 2: The DFE 0( )  of model (1) is locally 

asymptotically stable (LAS) if 0 1R   and unstable when 

basic reproduction number is greater than unity. 

The threshold quantity 0 ,R  is the effective reproduction 

number of the disease. It represents the average number of 

secondary cases generated by one infected person in a 

completely susceptible population [9]. The epidemiological 

implication of the Lemma 2 is that when the 0 1R  , a 

small infection of the virus into the population will not 

generate large infection outbreaks, and this indicates that 

the disease will dies out in a short period of time. 

3.2.  Global asymptotic stability of DFE for 0 1R   

Theorem 1: The DFE of the model (1) is globally 

asymptotically stable (GAS) in 
*D  whenever  0 1.R 

 
Proof: Considering the following linear Lyapunov function: 

1 2V B E B I                           (7) 

With Lyapunov derivative (where a dot represents 

differentiation with respect to time) 

1 2 V B E B I           (8) 

Substituting the expression for E  and I from (1) into (8), 

we have: 

1 1 2 2

1 1 1 2 2 2

 = ( ) ( )

    = 

V B SI A E B E A I

B SI B A E B E B A I

 

 

  

  
      

 (9) 

Little perturbation from equation (9) with the reproduction 

number (6) gives: 

     

 
1

2 2 1 2

B

B A A A








         (10) 

Substituting the expression of 1,B 2B  obtained from 

equation (10) we have: 

 
1 2

1 2

1 2

1 2

  = 

     = 

     = ( ) 1

V SI IA A

I S A A

S
I A A

A A

  

  

 








 
 

 

 

Since ,S N



   it then follows that: 

1 2

1 2

1 2 0

   ( ) 1

      = ( )( 1)

V I A A
A A

I A A R








 
  

 


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with equality only at 0. For 0 1R  , 

     0V   

with equality only when 0I  . Hence, by LaSalle’s 

extension to Lyapunov’s principle [12], the limit set for 

each solution is contained in the largest invariant set for 

which 0I  , this being the singleton 0.
 

Hence, the Lyapunov function (7) required for the GAS of 

the disease free equilibrium for the model in question is 

given as: 

1V E A I       (11) 

3.2 Existence of Stability of Boundary Equilibria 

Besides the disease – free equilibrium point, we shall show 

that the formulated model (1) has an endemic equilibrium 

point. The endemic equilibrium point is a positive steady 

state solution where the disease persists in the population. 

Solving the system of equation (1) above at the endemic 

steady- state resulted into: 

 

** **1 2 1 2

1

1

** **1 2 1 2 2

1 2 1 2

,                    

( )( )
,        

A A A A
S E

A

A A A A A
I R

A A A A

 

 


     

 

 
  

 
  

    
  

  (12) 

For which 1 2 0A A    to have a positive equilibria in the domain. 

where 1 2( ),   A ( )A            . 

3.3 Global asymptotic stability of boundary equilibrium, for 0 1R 
 

Theorem 2: The unique boundary equilibrium of the model (1) is globally asymptotically stable (GAS) in 
*D  whenever  

0 1.R 
 

Proof: Considering the model (1) and 0 1,R   so that the associated unique endemic equilibrium 1 of the model exists. We 

consider the following non–linear Lyapunov function of Goh–Volterra type: 

** ** ** ** ** **

** ** **
log log log

S E I
S S S E E E Q I I I

S E I

     
             
     

Z   (13) 

With Lyapunov derivative (where a dot represents differentiation with respect to time) 

** ** **S S E E I I
S E Q I

S E I

     
          

    
Z      (14) 

Substituting the derivatives ( , , )S E I from (1) into (14), we have: 

** **
** ** **

1 1

**
**

1 2

    

             

S E SI
SI S S I S SI A E E A

S E

QI E
Q E QA I QI A

I

 
     




   
            

   

 
   

 

Z

  (15)

 

At steady state from equation (1) we have: 

** ** **S I S              (16) 

Substituting equation (16) into (15) gives: 

** ** ** ** **
** ** ** ** **

** **
** **

1 1 1 2

    

          

S S I S S
S I S SI S S I S

S S

E SI QI E
SI A E E A Q E QA I QI A

E I

 
     

 
 

 
        

 

   
          
   

Z

  (17) 
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Further simplification gives: 
2 2** ** **

** ** ** ** **

** **
** **

1 1 1 2

    

          

S I S
S I S S S I S

S S

E SI QI E
A E E A Q E QA I QI A

E I

 
    

 


 
        

 

   
          
   

Z

   (18) 

Collecting all the infected class without the double star (**) from (18) and equating to zero: 

**

1 2 0S I A E Q E QA I              (19) 

A little perturbation of steady state from (1) and (19) resulted into: 

**** ** **

2
1 ** **

2

,    = ,   =   
A IS S I

Q A
A E E

 
       (20) 

Substituting the expression from (20) into equation (18) (a several algebraic calculations) gives: 
2 2 2** ** ** ** ** **

** ** ** ** ** ** ** **

**
    

S I S E SI I ES
S I S S S S I S I

S S E IE

   
              Z   

            (21) 

Factorizing equation (19) resulted into: 

** ** ** **
** ** **

** **
    2 3

S S S I E SE I
S S I

S S S IE E
 

   
         

   
Z       (22) 

Finally, since the arithmetic mean exceeds the geometric mean, the following inequality from (22) holds: 

 

** ** ** **

** **
2 0,    3 0

S S S I E SE I

S S S IE E

   
         

   
 

Thus,   0Z  for 0 1R  . Hence, Z  is a Lyapunov function in 
*D  and it follows by LaSalle’s Invariance Principle [12], that 

every solution to the equations of the model (1) approaches the associated unique endemic equilibria 1( ),  of the model as 

t  for 0 1R  . 

 

IV. CONCLUSION 

A simple SEIR model with a prophylactic for the exposed 

individuals was considered and analyzed with an assumption 

of the disease induce rate. This work has examined the global 

stability of the equilibria of the model using linear and non–

linear Lyapunov function. We have shown that the disease 

free and the endemic equilibria are globally asymptotically 

stable whenever the associated reproduction number is less 

than unity 0( 1)R  and greater than unity 0( 1)R 

respectively; for the endemic equilibrium, this implies that if 

the disease is contained in the population, then the disease 

will persist in the population.  
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